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Program Objectives

• Investigate differences in reforming of 
gasoline components to
– identify problem compounds
– identify beneficial compounds

• Evaluate the effects of fuel constituents and 
impurities (sulfur) on catalyst stability



Argonne Electrochemical Technology Program

Experimental Approach

• Determine product gas composition dependence 
on temperature, space velocity
– test major fuel components individually
– test minor components, additives, and impurities as 

isooctane solutions

• Long-term testing (1000h) 
– determine poisoning, long-term degradation effects
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The short-term test reactor is capable of 
sampling at various points
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ATR unit can reform all major 
gasoline substituents at 800°C

• Conversion of all major
substituents is >95% 

• Hydrogen selectivity is 
lower for n-octane
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H2 yield from trimethylbenzene
is most sensitive to temperature

• Trimethylbenzene must 
be reformed at high 
temperature

• Isooctane reforms better 
than other components at 
low temperature
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H2 selectivity from n-octane decreases 
with increasing temperature

Fuel: n-Octane, GHSV = 15,000
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Hydrogen yield is highest from branched 
paraffins at low space velocities

• Rate of reforming of
trimethylbenzene
appears to be slower 
than that for other 
components

• methylcyclohexane
and toluene appear to 
react rapidly at 800°C
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Trimethylbenzene reforming decreases 
rapidly with decreasing temperature 
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Autothermal reforming of major gasoline 
components have been studied

• All major substituents can be reformed at 800°C
• Trimethylbenzene reforming requires high 

temperatures and low space velocities
• Methylcyclohexane and toluene can be reformed 

at high space velocity at 800°C
• Isooctane reforms better than other components at 

low temperature
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Sulfur impurities increased hydrogen 
yield from ANL catalysts

800C, GHSV = 15,000 /hr

0

10

20

30

40

50

60

%CO %CH4 %CO2 %H2
Product Gas

G
as

 C
om

po
si

tio
n

%
 d

ry
, H

e 
Fr

ee
ANL1 isooctane+1000 wppmS

ANL1 pure isooctane

ANL2 isooctane+300 wppmS

ANL2 pure isooctane



Argonne Electrochemical Technology Program

Some sulfur remains on the catalyst

• Sulfur found in reformate gas as H2S

Sulfur in Fuel
(wppm)

S on catalyst after reaction
(wt.%)

300 0.02

1000 0.04
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Short term tests with sulfur containing fuels 
show some loss in activity of Ni ATR catalyst
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Sulfur containing fuel showed 5% 
loss in H2 yield after 1700 hrs

• 750-790oC
• GHSV= 5169/h
• Benchmark Fuel + S

– (50 wppm)
• 1700h
Results
• No decline in COx 

• ~5% decline in H2

• H2 selectivity:  88-85% 
– (40-38% H2 dry)

• More H2 from fuels with 
sulfur
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Effects of S impurities are 
dependent on catalyst

• Sulfur improved hydrogen production from 
Pt-containing ATR catalyst

• Sulfur poisoned Ni-containing ATR catalyst
• Long-term tests with S impurities indicate 

little degradation of Argonne Catalyst
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Future Work
• Investigate sulfur effects further

– Sulfur XANES investigation of catalyst at 
University of Louisiana 

– Investigate kinetics of sulfur effects 
• Investigate effects of additives
• Continue collaboration with petroleum 

companies on future fuel-cell gasoline
• Synergistic effects
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Conclusions

• Trimethylbenzene is undesirable in a fuel 
cell gasoline
– has lower hydrogen density, requires high 

temperature, long contact times  
• Sulfur effects are dependent on catalyst

– improves H2 production from Pt-containing 
ANL catalyst 



Argonne Electrochemical Technology Program

Industry Collaborations

• Syntroleum 
– Evaluated reformability of Fischer-Tropsch fuels        

[S. Ahmed, J.P. Kopasz, B.J. Russell, H.L. Tomlinson   Proceedings of the 3rd 
International Fuel Cell Conference, Nagoya, Japan, 1999]

• UOP, BP-Amoco, Exxon-Mobil
– Continuing discussions on fuel chemistry, future 

fuels for fuel cells
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Responses to Previous Reviewers

• Several reviewers indicated need for further 
interaction with petroleum industry
– We now interact with BP-Amoco, Exxon-Mobil, 

Syntroleum, and UOP on fuels issues
• Too much emphasis on fuels analysis

– Fuels analyses were needed to identify principal 
gasoline constituents for current work
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Timeline/Milestones
• Program initiated - 5/99
• Completed first 1000h test - 9/99
• Recommended reference benchmark fuel - 10/99
• Completed second long-term test reactor - 2/00
• Tests completed on 5 gasoline components - 4/00
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Timeline/Milestones

• Define alternative fuel blend(s) as standard reformer 
“gasoline(s)” -7/00

• Test 3 major gasoline additives -7/00
• Complete 1000h tests on four catalysts -7/00
• Identify problem contaminants and constituents in 

FTP gasoline - 9/00
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